Tools


Home > Seminars, events & talks


Seminars, events & talks

Thursday, 7th March, 2013, 11:00

GPCR drug discovery

Unraveling the mechanisms of tumorigenesis

Speaker: Abel Gonzalez-Perez & David Tamborero - Biomedical Genomics, GRIB-UPF

Room Aula (473.10)

Thursday, 28th February, 2013, 11.00-12.00

Evolutionary Genomics

How orphan genes, novel domains and protein modularity help set the stage for genomic novelties and developmental shifts

Over the past years it became clear that many "novel" genes are indeed truly novel since they have not arisen in the wake of gene or whole genome duplications.

I will discuss the mechanisms of novel gene emergence across different taxa. I will also concentrate on the role which gene rearrangements play for the emergence of novel proteins with altered functions that may cause functional shifts and trigger developmental innovations.

Most shockingly, thousands of domain are completely lost along every lineage over several millions of years but only some tens of domains are newly formed. However, these novel domains seem to have a high adaptive value as they rapidly multiply in genomes and seem to confer a high fitness gains since they are mostly related to biotic and abiotic stress responses.

Speaker: Erich Bornberg-Bauer, Molecular Evolution and Bioinformatics Inst., University Muenster, Germany

Room Aula Room CRG (473.10)

Monday, 4th February, 2013

Computational Biophysics

Fragment based drug discovery by simulation

CDDD - Computationally Driven Drug Discovery, Istituto Italiano di Tecnologia (IIT), Geneve (Italy) 4-6 February 2013

Speaker: Gianni de Fabritiis

Friday, 25th January, 2013, 12.00

Computational Biophysics

Structural Bioinformatics applied to Bio-Nanotechnology

Speaker: Fernando Danilo González Nilo, Center for Bioinformatics and Integrative Biology (CBIB), Santiago de Chile, Chile.

Room Marie Curie

Friday, 7th December, 2012, 12:00 - 13:00

GPCR drug discovery

Pathway driven prediction of mutation impact in cancer

Josh Stuart, from the Systems Biology Group of the University of California, Santa Cruz, USA, uses data-driven approaches to identify and characterize genetic networks, investigates how they've evolved, and then uses them to 
simulate and predict cellular behavior. His approach is to design computational models and algorithms that integrate highthroughput molecular biology datasets to predict cellular- and organism-level phenotypes. He particularly focuses on elucidating altered signalling pathways in cancer cells that initiate and drive tumorgenesis and is developing models to predict the impact of mutations in human tissue and a patient's response 
to treatment. 

Speaker: Josh Stuart, Systems Biology Group-University of California, Santa Cruz, USA

Room Marie Curie Room

Thursday, 29th November, 2012, 11:00

Evolutionary Genomics

"Unequal evolution after gene duplication is mediated by positive selection"

Gene duplication plays a major role in genome evolution and is widely accepted to be an important source of new gene functions. Different scenarios have been proposed to explain the retention of the two copies: gain of an advantageous function by one of the copies (neofunctionalization), split of the ancestral function between the two copies (subfunctionalization) and, increased gene dosage advantage.
The analyses published so far have not conclusively identified any of these models as the dominating one. Taking advantage of the reasonable highquality mouse and rat genomes, we have obtained an exhaustive set of duplicated genes that were originated at different times during rodent evolution and measured the strength of purifying selection and of positive selection at different time periods. Our findings indicate that after gene duplication, the daughter copy typically evolves 3 to 5 times faster than the parental copy, and the impact of positive selection increases about 3.5 fold with respect to the ancestral gene. After the initial acceleration the rate gradually decreases until it reaches the levels observed before the duplication. In addition, only the faster evolving copy displays significant differences in tissueexpression patterns compared to the singlecopy ortholog. Our results provide strong evidence that neofunctionalization is the most common scenario driving the fate of recently duplicated rodent genes.

Speaker: Cinta Pegueroles - Biomedical Informatics - GRIB (IMIM/ UPF)

Room Aula (473.10)

Wednesday, 26th September, 2012

Computational Biophysics

Fragment based drug discovery by simulation

Drug Design 2012, Oxford, UK,  26-28 September, 2012

Speaker: Gianni de Fabritiis

Tuesday, 18th September, 2012

PharmacoInformatics

Multiscale simulation in the prediction of drug-induced cardiotoxicity: Integrating molecular, cellular and tissular levels

VPH 2012 Conference, London, UK, 18-20 September 2012

Speaker: Obiol-Pardo C, Gomis-Tena J, Sanz F, Saiz J, Pastor M

Sunday, 2nd September, 2012

Integrative Biomedical Informatics

Development of an integrated in silico prediction system of drug toxicity endpoints

International Symposium on Medicinal Chemistry, Berlin, Germany. 2-6 September 2012

Speaker: Carrió P, Cases M, Sanz F, Pastor M

Friday, 13th July, 2012, 11:00-12:00

Computational Biophysics

Multitarget strategies in the search of novel drug candidates for the treatment of Alzheimer’s disease

Alzheimer’s disease (AD) is a disruptive brain disorder characterized by a massive neuronal loss leading

to a progressive decline of cognitive function. The cause of AD is poorly understood. Several hypotheses have been proposed over the years to explain the disease and to identify relevant drug targets. It has been shown that AD is always associated with the formation of plaques (amyloid hypothesis) as well as with the deposition of neurofibrillary tangles (tau hypothesis).
There are few currently approved drugs, and these offer just a small benefit for a relatively short period of time. Nowadays, AD represents the largest unmet medical need in neurology.
Our approach to drug discovery in AD has been based on a radical change of the classical ‘one-drug one-target’ paradigm into a multitarget drug discovery approach. In this seminar, two different series of molecules discovered following the multitarget strategy will be presented. The initial steps of our drug discovery strategy will be discussed, from structure-based drug design, carried out by means of computational tools, to chemical syntheses, and in vitro and in vivo characterization.

Speaker: Dr. Andrea Cavalli, Italian Institute of Technology (IIT), Genova, Italy

Room Xipre (seminar 173.06-183.01)



Site Information